CORRESPONDENCE

1073

X2 X2
X 0o 1 2 X o1 2
0 o o 1 0 o 1 1
1 o 1 1 1 111 /
11 2

(@

(b)

Fig. 5. MT*(3) elements for binary (a) AND*, (b) OR*, and (c) NOT* gates.

TABLE 1
sqL’ZS:TZit X % x3 x| p|f|f3|f5]F15
0 0 0 0 of ofl1f1]1]2
1 0o 0o o 1{ol1l1]1]2
2 0o 0 1 ol of1f1f1]2
3 o 0o 1 1| 1fof1f1]2
4 o1 0 of ofl1f{1[1]2
5 o 1 o 1) ofl1|1|1]2
6 o 1 1 o o|l1]|1]1]2
7 o 1 1 1| 1|o|1]1]2
8 10 0 o of1]|1]1]2
9 1 0 0 1| ofl1|1]1]2
10 1 0o 1 0| ol1l1]|1]2
1 1 0o 1 1| 1]ol1]1]2
12 1 1 0 0| 1]1]o]1]2
13 11 0 1 afl1]of1]2
14 11 1 o 1fi1lol]2
15 1 11 1| olololl2

Next we should consider multiple s-a-2 faults. It is easy to show
that one additional column should, then, be included in Table I
covering the functions f; 3 =f1.4 =f2,3 =f2,4 = 0 (where f; ; re-
sults from w; and w; both s-a-2). All other multiple s-a-2 faults are
accounted for by the functions fi, f3, f5, and f;s. One more test
becomes necessary and it can be chosen from the set {3, 7, 11, 12,
13, 14}.

From Theorem 2 it follows that all s-a-2 faults can be detected
using the input vector 2222. Therefore all multiple faults within
the network are detectable with the test set {0000, 0011, 2222},

It should be pointed out that the same network realized with
Boolean gates requires four tests for single fault detection and five
tests for multiple fault detection [7].

V. CONCLUSIONS

The preceding discussion suggested the use of additional logic
values for fault detection in MT(R) networks. This approach
greatly reduces the number of tests that must be applied. It also
simplifies the process of deriving adequate test sets.

The idea of using higher valued circuits to improve testability of
binary networks was shown to be potentially promising in both
sequential and combinational networks [8]. However, the resul-
tant overhead in such cases can be considerable, The cost of addi-
tional circuitry becomes less important when circuits with larger
radices are to be tested.

While little work has been done on the subject of testing many-
valued circuits, it is important to recognize the many possibilities
offered by such circuits, that do not arise in binary cases.

REFERENCES

[1] S. Y. H. Su, “Symposium chairman’s message,” in Proc. 6th Int. Symp. Multiple-
Valued Logic, Logan, UT, May 1976.

[2] R. J. Spillman and S. Y. H. Su, “Detection of single, stuck-type failures in multi-
valued combinational networks,” IEEE Trans. Comput., vol. C-26, pp. 1242-1251,
Dec. 1977.

[3] D. R. Haring, “Multi-threshold threshold elements,” IEEE Trans. Electron.
Coniput., vol. EC-15, pp. 45-65, Feb. 1966.

[4]- A. Druzeta, Z. G. Vranesic, and A. S. Sedra, “Application of multi-threshold
elements in the realization of many-valued logic networks,” IEEE Trans.
Comput., vol. C-23, pp. 1194-1198, Nov. 1974.

[5] T. T. Dao, L. K. Russell, D. R. Preedy, and E. J. McCluskey, “Multi-level I’L
with threshold gates,” in Proc. 1977 I1EEE Int. Solid-State Circuits Conf., Phil-
adelphia, 1977, pp. 110-111.

[6] N. Friedman, C. A. T. Salama, F. E. Holmes, and P. M. Thompson, “Multivalued
integrated-injection-logic (MI?L) full adder,” Electron. Lett., vol. 13, pp. 135-136,
Mar. 1977.

[7] J. F. Poage, “Derivation of optimal tests to detect faults in combinational cir-
cuits,” in Proc. Symp. Mathematical Theory of Automata, New York, Polytechnic
Press, 1965, pp. 483-528.

[8] Z. G. Vranesic, “Multi-valued circuits in fault detection of binary logic circuits,”
Microelectron. Rel., vol. 15, supplement, pp. 25-33, 1976.

Minimal TANT Networks of Functions with DON'T CARE’s
-and Some Complemented Input Variables

H. A. VINK

Abstract—The minimization algorithm of Gimpel realizes a
minimal TANT network for any Boolean function under a NAND gate
cost criterion. A TANT network is a three-level network composed
of AND-NOT (i.e., NAND) gates, having only true (i.e., uncomple-
mented) input variables.

This correspondence extends the algorithm of Gimpel such that
functions which can be minimized, may also be incompletely
specified. It is shown that the incorporation of these DON'T CARE’s
cannot be done as easy as in the minimization method of
Quine-McCluskey. Beside the prime implicants of the completely

Manuscript received December 23, 1975; revised November 17, 1976 and July 11,
1977.

The author is with the Department of Electrical Engineering, Delft University of
Technology, Delft, The Netherlands.

0018-9340/78/1100-1073300.75 © 1978 IEEE

1074

specified switching function, some additional implicants are neces-
sary during the first phase of the minimization method of Gimpel
Rules are given to generate a proper set of implicants. The minimiza-
tion method of Gimpel is extended with these rules such that a
minimal TANT network is obtained.

A second extension of the algorithm of Gimpel concerns the use of
complemented input variables. Complemented input variables may
further reduce a TANT network. These variables may be easily
incorporated but cause an increase of the number of prime permis-
sible implicants. Rules are presented which strongly reduce the
number of additional implicants. The minimization method of
Gimpel is extended accordingly and gives a minimal “TANT”
network.

Index Terms—DON'T CARE’s, implicants, invertors, minimiza-
tion, gate cost criterion.

INTRODUCTION

In literature many algorithms have been presented which give a
minimal or near-minimal network. In a specific design project an
algorithm may be selected for every application. This may result
in a large number of selected algorithms. A network with near
optimal properties can be designed, however, by just selecting a
small number of algorithms such that they as a whole are suited
for this project. Criteria for the selection of these algorithms may
be as follows: 1) the size of the switching function to realize
(number of inputs, outputs, wild or structured logic); 2) practical
restrictions which can be taken into account (fan-in, fan-out, logic
level limitations, type of logic gates to be used); 3) the way the
algorithm will be used: hand or computer execution; 4) the size of
the possibly in quantity produced circuits; 5) the properties of the
realized networks (a minimal or near-minimal number of gates,
connections, levels of whatever a designer wants to minimize;
hazardless).

Several special NAND algorithms [1]-[10], have been presented.
This article extends the algorithm of Gimpel [3] such that DoN’T
CARE’s and some complemented input variables beside the uncom-
plemented form are fully incorporated and a minimal three level
network is obtained. Single output switching functions can be
handled with small to intermediate sizes. The algorithm is suitable
for hand and computer execution. If fan-in or fan-out restrictions
must be solved, then this may be done by Su and Nam [7].

The algorithm of Gimpel is similar to the method of Quine-
McCluskey [11], [12], which is one of the basic minimization
techniques of logical circuits. Quine-McCluskey realize a two
level network of minimal cost, where the cost is either the total
number of gates or the total number of gate-inputs. This minimi-
zation method assumes that every input variable is available in its
true and inverted form; otherwise a Boolean function cannot be
implemented as a rule by a two level network. If a circuit does not
give the complemented variables besides the true form, then an
additional level, consisting solely of invertors, is necessary.

Gimpel [3], [13] has studied the minimization of logical circuits
for which no complemented input variables are available. His
method applies to three level AND-NOT networks, since three
levels are just sufficient for realizing every Boolean function if no
complemented input variables are available. Gimpel’s algorithm
realizes a minimal TANT network, where TANT stands for a three
level network composed of AND-NOT gates, having only true input
variables.

The method of Quine-McCluskey is easily extended to incom-
pletely specified switching functions, as described in [11], [12], and
[13].

This paper extends the minimization algorithm of Gimpel by
allowing incompletely specified switching functions. The incor-

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-27, NO. 11, NOVEMBER 1978

poration of DON’T CARE’s proves to be more difficult than in the
minimization method of Quine-McCluskey.

A second extension of the minimization method of Gimpel con-
cerns the use of complemented input variables besides the true
input variables. Complemented input variables generally reduce a
TANT network. Although these variables are easily incorporated
they cause an increase of the number of implicants which must be
considered. Rules are presented which strongly reduce the number
of additional implicants. This last extension of course makes the
acronym “TANT” less applicable; the acronym “TAN” which stands
for three level network composed of AND-NOT gates, would give a
better description.

THE MINIMIZATION METHOD OF GIMPEL

This correspondence is based on the definitions given by
Gimpel [3]. In his minimization method the following implicants
of a given function f, are determined successively:

1) Prime Implicants (PI’s);

2) Maximum Permissible Implicants (MPI’s);

3) Prime Permissible Implicants (PPI’s).

Finally the Covering Closure (CC-table) Table, an extension to
the prime implicant table [3], is filled with the augmented ex-
pressions of the PPI’s.

This correspondence concentrates on the finding of the right
inputs of the CC-table. The reduction of the CC-table, resulting in
a minimal TANT network, is described by Gimpel [3] who lists the
six reduction techniques of Grasselli and Luccio [14].

The minimization of TANT networks can be modified and ex-
tended with some reduction rules as presented in [15] and [16].

INCOMPLETELY SPECIFIED SWITCHING FUNCTIONS

Let the function regarding the 1-cells be denoted by f 1, and the
function regarding only the DON’T CARE’s by f2. The prime impli-
cants of the completely specified switching function f1 + f2 are
the same as those of the incompletely specified switching function
/- The prime implicant table contains, however, only the 1-cells of
the function f'1, because it is not necessary to cover the DON’T
CARE cells. This prime implicant table is reduced by removal of
prime implicants which cover solely DON’T CARE’s.

The example of Fig. 1 shows that the algorithm of Gimpel
cannot be extended in the same manner as the method of
Quine-McCluskey.

1) Prime implicants of the function f1 (without DON'T CARE
12):

wx'y, wx'z', wxyz'.

The TANT network: wx'(yz) vwxyz = wx'(yz) vwxy(yz) re-
quires 6 NAND’s.

2) Prime implicants of the function f (DON'T CARE 12 is
regarded as an 1-cell):

wx'y, wx'z', wxz'.

The TANT network: w'x'(yz)’ v wxz' requires 7 NAND’s. The incor-
poration of DON'T CARE: 12 causes implicant wxz’ to be derived
from wxyz'. Headfactor “y” of implicant wxyz’' offers third level
gate sharing of (yz)' and causes a reduction of the TANT network.
Implicant wxz’ does not offer this possibility, however, because its

[T)

head does not contain headfactor “y.

Conclusion

The algorithm of Gimpel cannot be extended to incompletely
specified switching functions f by just considering the prime impli-
cants of the function f.

CORRESPONDENCE

1075

Z (I)x)

N

y
(2
w
®

Fig. 1.

L —2Z(1)

Function f(w, x, y, z) with DON’T CARE: wxy'z'.

X (@)

O4{ 14

213

10 111y

84194

y
@
w
®)

Fig. 2. Function f(w, x, y, z) used to illustrate Theorems 1 and 2.

This extension can be performed, as will be shown, if some
implicants of f which are not prime implicants are added to the
prime implicants of f. These implicants which are added to the
prime implicants of f will be denoted from now with “additional
implicants.”

In the minimization method of Gimpel, implicants are gen-
erated, besides the prime implicants, if these give a compound
MPI or if these are necessary because of the third level gate
sharing. }

1) The additional implicants of an incompletely specified swit-
ching function f are not necessary to form a compound MPI
because such an MPI will also be derived from the prime impli-
cants of the function f.

a) If from an-additional implicant p1 of f a prime implicant
p2 of f may be derived by elimination of headfactors and if p1
together with some other implicants p3, ---, pk give an MPI, then
this MPI will also be derived from p2 and the implicants p3, -,
pk. :
Example: Suppose function f, as shown in Fig. 1, is extended
with a prime implicant p3 such that from p3 and wxz’ an MPI
with head wxy can be derived:

wxy A (wxz' v p3) = wxyz' v wxyp3.

The additional implicant of function f: wxyz’ has been derived
from prime implicant wxz'.

b) If from an additional implicant p1 of f a prime implicant
p2 of f may be derived by elimination of tailfactors, then p1 will
never be necessary to form an MPI:

Theorem 1: An implicant pl of function f may be omitted if f
has an implicant p2 which properly includes p1 but which has the
same head as pl.

Appendix I contains the proof of this theorem.

Example: Implicant x'y of the function f, shown in Fig. 2, can be
derived from w'x’y. Theorem 1 proves that implicant w'x’'y may be
omitted; it has the same head as x'y but tailfactor w’ additionally.

2) The additional implicants may be necessary because of the
third level gate sharing. The example of Fig. 1 shows that an
implicant which is included in a prime implicant of f and which
has additional headfactors comparing with the prime implicant,
must be added if it is necessary because of the third level gate
sharing. This implicant may be included in a prime implicant of

the function f 1. Gimpel has proven [3] that a permissible impli-
cant which is included in a prime implicant of the function f1,
may be omitted. An implicant which is included in a prime impli-
cant of fand which has additional headfactors compared with the
prime implicant, may therefore be omitted if it is included in a
prime implicant of f 1.

Example: Implicant w'x'yz’ (2) of the function fshown in Fig. 1,
can be omitted because it is included in w'x’z’ (2, 0).

Conclusion

The determination of the prime implicants of the function f
must be followed by an addition of implicants which are included
in prime implicants of f and have additional headfactors
compared with these prime implicants, but which are not included
in a prime implicant of f'1.

This number of additional implicants may, however, be
reduced.

Theorem 2: An implicant p2 of function f may- be omitted if:

a) p2 is properly included, considering only the 1-cells, in an
implicant p1 of f which has some additional headfactors compar-
ing with p2 and if : .

b) p2 is properly included, considering the 1-cells and DON'T
CARE’s, in an implicant p3 of f.

Proof:.

1) Implicant p2 achieves not more than pl and will never re-
quire less NAND’s because of the third level gate sharing.

2) Implicant p2 may give an MPI which, however, also can be
derived from implicant p3.

3) Implicant p3 may give, moreover, an MPI which cannot be
derived from p2. Q.ED.

Example: Implicant p1: x'yz of function {1 of Fig. 2 gives impli-
cants p2: x'z and p3: x’ of f. Implicant p2 meets the requirements
of Theorem 2 and can be omitted:

1) x'z achieves the same as x'yz and will never require less
NAND’s because of the third level gate sharing.

2) x'z may give an MPI with a head not containing the variable
y; this MPI can, however, also be derived from x'.

3) Implicant x’ may give, moreover, an MPI with a head, not
containing the variable z.

The determination of the prime implicants of f, will be followed
by an addition of some implicants. The prime implicants which

1076

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-27, NO. 11, NOVEMBER 1978

ZO)XG)
o1
| 3
y
vie
—-——x(4)z(')
dl d| d| d| d 171 4
‘ d d| d| d| d| d
‘ d d[")] d| d| d] d
Yol ol ol of | af af2e
@
w
®

(b)

Fig. 3. (a) Specification of the function f(w, x, y, z): X'y’ v xyz'. (b) The extended
Karnaugh map of the function shown in Fig. 3(a) with the complemented input

variable of y and z.

cover solely DON’T CARE’s cannot be omitted; they may give an
MPI. After the determination of the MPI’s, implicants which
cover solely DON’T CARE’s can be omitted.

Theorems 1 and 2 result in the following extended algorithm of
Gimpel for the determination of the PPI's of an incompletely
specified switching function:

1) Determine the prime implicants of f.

2) Adjust those implicants which are formed during phase 1
and which do not fall into one of the following categories. Impli-
cants which

a) are properly included in a prime implicant of f1;
b) cover solely DONT CARE’s; and
c) meet the requirements mentioned in Theorems 1 and 2.

3) Determine the MPI’s from the implicants of f. The reduction
rule of Gimpel concerning an isolated quasi-simple MPI is still
applicable if the DON’T CARE’s are considered as 1-cells which are
covered by other implicants. Consequently this rule is not applic-
able to an MPI which covers some DON'T CARE’s.

4) Determine the PPI’s from the MPI’s.

5) Determine the augmented principal expressions from the
PPI’s and fill the CC-table.

Example: The prime implicants and additional implicants of
the function, shown in Fig. 2, are determined:

’

prime implicant x
additional implicants x'yz, wx'y, x'y

The minimal TANT network: wx'(yz) v wxy(yz) requires 6
NAND’s. ‘

FUNCTIONS WITH SOME COMPLEMENTED INPUT VARIABLES

The algorithm of Gimpel is extended by the use of some com-
plemented input variables besides the true input variables. This
extension will be illustrated with the function, shown in Fig. 3(a).
It is assumed that the complemented input variables of y and z is
given, these will be denoted with new names: z = w and y’ = v.

The Karnaugh map is now 4 times as big as the original one.
The cells which are based on the impossible logic combinations:
wz', wz, v'y’, vy are considered as DON’T CARE’s. Let these “impli-
cants” be denoted with “empty” implicants. The original fun-
damental products are enlarged with the new variables.

0: x'y'z’ gives vwx'y'z’: 24
1: x'y'z gives vw'x'y'z: 17
6: xyz' gives v'wxyz': 14

The introduction of new variables causes an increase of the
number of prime implicants. Gimpel has proven [3] that permis-
sible implicants which are included in a prime implicant, can be
omitted. The proof remains unchanged if some tailfactors contain
complemented input variables. The implicants of the function
shown in the extended Karnaugh map can therefore be deter-
mined easily using the symmetry in the extended Karnaugh map
from the implicants of the function shown in the original Kar-
naugh map. This symmetry is introduced by the new variables.

Example:

1) The original prime implicants: x'y’ and xyz’' give some new
prime implicants:

X'y’ gives: xy’, vx’

xyz' gives: xyz', wxy, v'xz', v'wx.

2) The empty implicants are as follows:

wz', wz, vy, vy.

The introduction of new variables for the complemented input
variables gives a straightforward solution of this minimization
problem. The MPI’s and PPI’s are determined from the prime
implicants of the expanded Karnaugh map of Fig. 3(b). The CC-
table is filled with the augmented expressions of the PPI’s after the
substitution of the introduced variables by the corresponding
complemented input variables and the removal of the empty im-
plicants. The reduction of the CC-table results in a minimal TANT
network.

The extension of the minimization method of Gimpel using
complemented input variables can easily be performed in princi-
pal. Each complemented input variable, however, causes the Kar-
naugh map to redouble and the number of primé implicants to
increase sharply. The determination of the MPI’s and PPI’s offers
therefore an enormous amount of work.

This extension of the minimization method of Gimpel, however,
can be strongly simplified. The following theorems which are also
based on the introduction of a new name for every complemented
input variable, prove that the Karnaugh map need not be ex-
panded. They reduce the number of additional implicants.
Moreover, these can be determined from the original prime
implicants.

Theorem 3: Implicants which may be expressed as ab, where a
is an uncomplemented input variable and b is the new variable
introduced for the complemented input variable a (ie., b = '),
can be omitted.

CORRESPONDENCE

Proof:

1) Implicant ab will never give a compound MPL

2) Implicant ab does not give PPI’s.

3) Implicant ab will be removed after the substitution of the
introduced variables by the complemented input variables be-
cause ab describes an empty implicant.

Omission of such an implicant ab implies that no MPI should
be formed, having a head which is based on ab.

Example: In Fig. 3(a), the empty implicants are w'z’, wz, v'y’, vy.
According to this theorem, wz and vy may be omitted.

Theorem 4: Implicants cannot be omitted if and only if they can
be derived from an original implicant by replacing some headfac-
tors by the corresponding introduced variables. An MPI which
has a head containing one of the introduced variables, can be
omitted.

Theorem 4 is proven in Appendix II.

Example: In Fig. 3(a), implicant xyz' gives: xyz/, wxy, v'xz’,
v'wx. According to Theorem 4, the implicants xyw and v'wx can be
omitted.

Application of Theorems 3 and 4 to the example of Fig. 3(a)
results in the following prime implicants:

X'y gives: x'y

xyz' gives: xyz' and v'xz’.

Theorems 3 and 4 have the following consequences:

1) The introduction of new variables (the origin of the empty
implicants) causes that no dominant quasi-simple MPI will
appear; such an MPI will never be isolated.

2) The determination of the MPI's and the PPI’s requires no
extended Karnaugh map or prime implicant table, but only a
modified prime implicant table..

Complemented input variables cause the introduction of a new
kind of augmented expressions. Let the input variables x and y be
given in its primed and unprimed form, then x’y’ will have the
following augmented expressions: x'(x'y) and y'(y'x). Theorem 5
proves that these expressions are also formed if a new variable is
introduced for every complemented input variable and the aug-
mented expressions are determined.

Theorem 5: If new names are introduced for complemented
input variables of a function f and the PPI’s of f are determined,
then the augmented expressions will also be generated which have
tailfactors being a product of complemented and uncomple-
mented input variables.

Appendix III contains the proof of this theorem.

Theorem 5 shows that the use of new variables for the comple-
mented input variables causes that every augmented expression of

the new kind will be generated. The formation of the augmented -

expressions on account of the headfactors has not changed.

The following example illustrates an augmented expression of
still another kind.

Let function f of variables x, y, and z have one prime implicant:
xy'. If the complemented variable of z is given, then the new
variable w is introduced with w = z’ and the empty implicant w'z’.
The determination of the MPI with head x gives:

xy vawz = x(yzf(wy) = x(2) 7Y = xy'

The PPI’s of a function f with complemented input variables
besides the true input variables, can be determined according to
the following algorithm:

1) Determine the prime implicants of f.

2) Define the new variables and derive the new prime
implicants.

3) Fill the prime implicant table with the new fundamental

1077

products out of that part of the Karnaugh map for which the
introduced variables are in the low state.

4) Determine the MPI’s in the same was as before, for every
fundamental product which is multiply covered.

5) Determine the PPI’s.

6) Substitute the original variables and adjust the implicants
which are not dominated.

The minimization of a TANT network is illustrated with the
function f with 1-cells: 4, 5, 7, and 12. Assume that the comple-
mented variable of z is given.

A minimal TANT network for the function fis xy’ v xz(wz)'.

A minimal “TANT” network for the function f with the comple-
mented input variable z' is (wz)' A (yz').

CONCLUSION

The algorithm of Gimpel is extended such that the functions
which can be minimized, may also be incompletely specified.
These DON'T CARE’s may reduce a TANT network further. It is
shown that the incorporation of DON’T CARE’s in the minimization
method of Gimpel cannot be done as easy as in the minimization
method of Quine-McCluskey. In the minimization method of
Gimpel some additional implicants are necessary besides the
prime implicants. Rules are given to generate the proper set of
implicants.

A second extension of the algorithm of Gimpel is the use of
some complemented input variables besides the true input vari-
ables. These variables may further reduce a TANT network. Com-
plemented input variables can easily be incorporated by the
introduction of new variables. These variables cause the number
of prime permissible implicants to increase. Rules are presented
which strongly reduce the number of additional implicants and
which give a minimal “TANT” network.

APPENDIX I

Theorem 1: An implicant P1 of function f may be omitted if f
has an implicant P2 which properly includes P1 but which has the
same head as P1.

Proof: The implicants P1 and P2 can be expressed as a pro-
duct of a headterm and tailfactors: HT1'T2' ---. Here H is a
product of uncomplemented input variables and each Ti is an
input variable. Assume that P2: HT1'T2' --- Tn’ is derived from
P1: HT1'T2' --- Tn'Tn + 1’, on account of DON’T CARE’s. A reali-
zation of a function g with implicant P1 is compared with a reali-
zation of g with implicant P2.

1) Implicant P1 will never require less NAND’s than P2 because
of the third level gate sharing.

2) P1 and P2 may be combined with several other implicants:
P3, P4, ---, Pm. The resulting compound MPI1 and MPI2 are
compared with each other. The PPI's which are derived from
MPI1 will also be derived from MPI2, or will be dominated by
PPI’s derived from MPI2 so MPI2 will never offer a more expen-
sive solution.

3) Implicant P2 may give a MPI with a head containing the
variable Tn + 1’, whereas P1 does not.

4) Formation of an MPI with a head different from H does not
change the proof.

5) If implicant P2 differs in more than one tailfactor from P1,
than the comparison of MPI1 with MPI2 leads to the same
conclusion. Q.E.D.

ApPPENDIX IT
Theorem 4 : Implicants cannot be omitted if and only if they can

be derived from an original implicant by replacing some headfac-
tors by the corresponding introduced variables. An MPI which

1078

has a head containing one of the introduced variables can be
omitted.

Proof: The symmetric, extended Karnaugh map shows that
implicants which can be derived from an original implicant by
replacing some headfactors by the corresponding introduced vari-
ables, must be added.

The following part contains the proof that a prime implicant
which is derived from an original prime implicant, may be omitted

if it has an introduced variable as headfactor. Moreover, an MPT

which has a head containing one of the introduced variables, can
be omitted. Two MPI'’s are defined and compared with each
other.

MPI1 has a head containing some introduced variables and is
determined from the prime implicants of the extended
Karnaugh map.

has the same head as MPI1 but without the introduced
variables and is determined from the reduced list of
prime implicants, according to Theorems 3 and 4.

MPI2

MPI1 will now be dominated by MPI2:

1) If MPI1 has a head containing no introduced variables, then
only the prime implicants of the reduced list are combined to form
an MPL

2) The proof is shown for an MPI with one introduced variable
as headfactor. The method of the proof remains unchanged for
every other combination of headfactors.

Assume function f is given with the complemented input vari-
able of vl. Introduce the variable v2 with v2 = v1. Two MPI’s
with the same head are determined. MPI1 has a head containing
solely the introduced variable v2 and is determined from the
prime implicants of the extended Karnaugh map. MPI2 has the
same head-as MPI1 but without the introduced variable v2 and is
determined from the reduced list of prime implicants, according to
Theorems 3 and 4. The prime implicants which will be combined
to form the MPI’s are partitioned into four distinct groups.

Prime implicants (PI's) of MPI1 are multiplied with the vari-
able v2, because MPI1 is determined having a head containing
the variable v2. The MPI’s are compared with each other: Every
PPI derived from MPI1 will also be derived from MPI2.

Q.E.D.

APPENDIX III

Theorem 5: If new names are introduced for complemented
input variables of a function f and the PPI’s are determined, then
the augmented expressions will also be generated which have tail-
factors being a product of complemented and uncomplemented
variables.

Proof: Assume function fis given with its complemented vari-
able v1. Introduce the new variable v2 with v2 = v1’. Combine the
implicants with head H, except for the empty implicant v1'v2". The
resulting product A of tailfactors will now be combined with
H Av1'v2’ and gives product B. Assume that T1 is a product of
variables not containing vl or v2.

1) If a tailfactor of A contains the variable v1 or v2, then B will
contain the same tailfactor.

2) If a tailfactor (T'1) of A does not contain the variables v1 or
v2 then B will contain the tailfactors (T1 Av1) and (T1 Av2).

After substitution of v2 by vl’, the concerning augmented ex-
pressions will arise. ' Q.E.D.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-27, NO. 11, NOVEMBER 1978

ACKNOWLEDGMENT

The author wishes to thank Dr. G. A. Blaauw for his contin-
uous help in revising this correspondence.

REFERENCES

[1] G. A. Maley and J. Earle, The Logic Design of Transistor Digital Computers.
Englewood Cliffs, NJ: Prentice-Hall, 1963, ch. 6, pp. 114-159.

[2] D. T. Ellis, “A synthesis of combinational logic with NAND or NOR elements,”
IEEE Trans. Electron. Comput., vol. EC-14, pp. 701-705, Oct. 1965.

[3] J. F. Gimpel, “The minimization of TANT networks,” IEEE Trans. Electron.
Comput., vol. EC-16, pp. 18-38, Feb. 1967.

[4] D. L. Dietmeyer and Y. H. Su, “Logic design automation of fan-in limited NAND
networks,” IEEE Trans. Comput., vol. C-18, pp. 11-22, Jan. 1969.

[5] E. S. Davidson, “An algorithm for NAND decomposition under network con-
straints,” IEEE Trans. Comput., vol. C-18, pp. 1098-1109, Dec. 1969.

[6] K. K. Chakrabarti, A. K. Choudhury, and M. S. Basu, “Complementary func-
tion approach to the synthesis of three-level NAND network,” IEEE Trans.
Comput., vol. C-19, pp. 509-514, June 1970.

[7] S. Y. H. Su and C. W. Nam, “Computer-aided synthesis of multiple-output
multilevel NAND networks with fan-in and fan-out constraints,” IEEE Trans.
Comput., vol. C-20, pp. 1445-1455, Dec. 1971.

[8] J. Frackowiak, “The synthesis of minimal hazardless TANT networks,” IEEE
Trans. Comput., vol. C-21, pp. 1099-1108, Oct. 1972.

[9] H. C. Torng, Switching Circuits. Theory and Logical Design. Reading, MA:
Addison-Wesley, 1972, ch. 8, pp. 103-130.

[10] S. Yajima and K. Inagaki, “Power minimization problems of logic networks,”
IEEE Trans. Comput., vol. C-23, pp. 153-165, Feb. 1974.

[11] D. D. Givone, Introduction to Switching Circuit Theory. New York: McGraw-
Hill, 1970.

[12] E. J. McCluskey, Introduction to the Theory of Switching Circuits. New York:
McGraw-Hill, 1965.)

[13] G. A. Blaauw, “Digitale techniek L,” Twente University of Technology, P.O.
Box 217, EF-library, Enschede, The Netherlands, no. 1261.0525.

[14] A. Grasselli and F. Luccio, “A method for minimizing the number of internal
states in incompletely specified sequential networks,” IEEE Trans. Electron.
Comput., vol. EC-14, pp. 535-541, Aug. 1965.

[15] H. A. Vink, “The analysis and synthesis of minimal TANT networks,” Twente
University of Technology, P.O. Box 217, EF-library, Enschede, The Nether-
lands, no. 1261.1545.

[16] H. A. Vink, B. van den Dolder, and J. Al, “Reduction of CC-tables using
multiple implication,” IEEE Trans. Comput., to be published.

Decomposition of Polygons into Convex Sets
BRUCE SCHACHTER

Abstract—A method is presented for decomposing polygons into
convex sets. The method is based upon a Delaunay tessellation of the
polygon. It is implemented as a divide-and-conquer technique.

Index Terms—Pattern recognition, polygon decomposition,
tessellation.

1. INTRODUCTION

This correspondence describes a method for decomposing poly-
gons into convex sets. We are requiring that the edges of the
decomposition start and end at vertices (Fig. 1).

The decomposition of polygons has a number of practical

Manuscript received December 19, 1977; revised March 8, 1978.
The author is with General Electric Co., Daytona Beach, FL 32015.

0018-9340/78/1100-1078800.75 © 1978 IEEE

